Mardi 13 mars (Guyancourt, amphithéâtre Gérard Mégie, 11h) Robin Hogan (Professor of Atmospheric Physics, Head of Department for Research, University of Reading, UK): "Clouds and their turbulent environment"

This talk will tackle two aspects of evaluating and improving the representation of clouds in weather and climate models using observational data, both of which involve the challenging problem of understanding the interaction between clouds and their turbulent environment.

The first part will address the problem of why virtually all models grossly underestimate the occurrence of mid-level altocumulus clouds, which represent an important uncertainty in climate prediction. These clouds are difficult to simulate because are often much thinner than the vertical resolution of the model, and it is necessary to correctly represent the processes of longwave cloud-top cooling, turbulent mixing and the exchange of water between the ice, liquid and vapour phases.   We have developed a flexible 1D model that can address this problem by running it at a cloud radar and lidar site to see which parameterizations lead to the best agreement with observations.  Two key bits of physics are needed to improve the occurrence of these clouds: firstly, a new parameterization for the sub-grid vertical distribution of thermodynamic quantities enables thin liquid water layers to be represented correctly in models with a coarse vertical resolution. Secondly, we show that an improved representation of the ice particle size distribution leading on from the work of Delanoe and Hogan (2008) provides a much better prediction of the rate at which ice crystals grow and fall out of the cloud.

The second part of the talk will demonstrate how ground-based Doppler lidar can be used to classify the boundary layer into nine different types (e.g. stratus-topped stable layer, decoupled stratocumulus, cumulus-capped etc). It is demonstrated that Doppler lidar diagnostics such as vertical velocity variance and skewness are able to diagnose whether boundary-layer turbulence is being generated from surface heating or cloud-top radiative cooling, which is key to distinguishing between types such as cumulus clouds and broken stratocumulus. A two-year dataset is then used to evaluate the predictions of the Met Office model, one of many models that diagnose a boundary-layer type in order to decide which mixing scheme to use, which is important for the transport of pollution and the evolution of weather systems.