Model calculation of aerosol radiative heating during POLARCAT

L. Doppler, F. Ravetta, J.-C. Raut, J. Pelon, G. Ancellet, J. Fischer, LATMOS/IPSL, UPMC - ISS/FU Berlin

Context

- We develop a radiative transfer code, MOMO, FU Berlin (extension to LW).
- We compute radiative fluxes with RT code MOMO within the [0.2 – 20 μm] band.
- We want to qualify this code. POLARCAT data are interesting: validation of MOMO computations (done with some instruments measurements as inputs) with other instruments measurements.
- POLARCAT dataset combined to MOMO permits the "optics' closure" and maybe the "radiative closure".

Context

- With MOMO and POLARCAT observations we will estimate the heating rates and forcings due to aerosol for a given region (Arctic). We will do a sensitivity study about the important parameters (type of aerosol, cloud-aerosol structure, albedo...) for the radiative heating.
- In a second step, we will extend these case-study to the mean situation in the artic region. This will give the opportunity to compare MOMO and WRF radiation scheme.
- In this talk, we will present a case study: for the case of POLARCAT flight of 31 March 2008, we present the method to get the "optic closure" in input of MOMO and the values of the heating rates and forcing in SW and LW for these inputs.

RT Code MOMO

- Matrix Operator Model (MOMO) Free University of Berlin radiative transfer code since 26/05/1991 (Fell and Fischer JQSRT 2001, Fischer and Grassl AO 1984)
 - **Spectral range: [0.2 100 μm]** (Doppler, Carbajal, Fischer, Pelon, Ravetta, Deleporte, in prep)
- NON CORRELATED k-distribution method

(Bennartz and Fischer JQSRT 2000, Doppler, Bennartz, Preusker and Fischer, in prep)

POLARCAT-Kiruna Campaign

Radiation impact of the aerosol with MOMO

- -> We compute: HR vertical profile + forcings
- -> We need in input:
- Vertical and horizontal distribution of aerosol
- Optical properties : obtained with SCApreprocessor from ref indexes and size distribution

We use LIDAR and in-situ measurements to get these information

LIDAR Profile

• G. Ancellet algorithn applied to 31/03/2008 flight: attenuated-beta profile of aerosol

LIDAR inversion

Iterative inversion algorithm gives the alpha profile for the 2 channels:

LIDAR inversion

The Angström coefficient is also retrieved. The figure seems to announce some small particles in the upper layer:

In-situ DATA

Grimm: 0.2<diam<2 μ m // SMPS: 0.02<diam<0.4 μ m At the end of the track: hippodrome decent. We analized in-situ data there.

Hippodrome descent with in-sittu instruments

We select two layers: 4300m and 2500m

SMPS is the good instrument to use (fine particles: 0.02<diam<0.4µm)

Origins: HYSPLIT

Origin of 2500m layer: Atlantic???

Origin of 4300m layer: Asia

Discussion

Top layer aerosol comes from Asia => we suppose anthropic urban aerosol, let see the size distribution (if small, the supposition is maybe correct) => model with OPAC soot ref index

The middle layer comes from the atlantic => Oceanic aerosol?

OUTLOOK: Do a better origin study with FLEXPART

Size-distribution

-> For the 4300m layer (green): we model small particles arc with OPAC soot ref index, and "large" particle arc with OPAC "inso" ref indexes

-> For the 2500m layer (blue): No distribution can really be found. We take OPAC maritime standard aerosol

Size-distribution

We put these size distributions and refractive indexes in input of MOMO SCA-preprocessor.

This preprocessor is a Mie-Code that computes the SSA, ext_norm coeff and phase functions.

Then MOMO MOMO-preprocessor can solve the RT equation

Results for the flight of 31 March

COMPUTATION with MOMO:

- -> Heating rates
- -> TOA forcing
- -> AOD, COD

Heating Rates in SW

Without aer

With aer

Additional Heating Rates of aerosol (SW)

Cooling Rates (LW)

Without aer

With aer

Additional Heating Rates of aerosol (LW)

Aerosol Forcing LW=1%SW

Comment about the results

- -> AOD are low
- -> LW radiative impact << SW radiative impact for the aerosol
- -> in SW: absorption for the high small particules' layer = heating
- -> in LW: small cooling for the lower layer
- -> 9, 10, 11 april flights will be more relevant (bigger AOD, better characteization (origin)
- -> The same method will be applied to these flights